пятница, 12 декабря 2025 г.

Расчет доверительного интервала параметров и предсказательного интервала для нелинейной регрессии

 На одном из предыдущих занятий было рассмотрено получение параметров нединейной функции, фитующей экпериментальнеы данные в смысле наименьших квадратов. Однако, использованное там примение функции k = lsqcurvefit(demodel,k0,SOC1dn(ind),Vd1(ind)); возвращало только сами значения параметров k, в то время как более статистически-убедительное их представление должно сопровождаться доверительным интервалов при заданном уровне достоверности. Помимо этого, имеет смысл также указывать и интервал, в который могут попасть предсказания использованной модели, принимая во внимание данные доверительные интервалы параметров. 

пятница, 5 декабря 2025 г.

Основы статистической характеризации данных и моделей

 В физической реальности не бывает "точных" данных, поэтому работа с любыми результатами измерений сопровождается оценкой их неопредленности, для вспоминания основных положений и стандартов см. материалы второго вводного занятия. Аналогично, при использовании моделей явлений необходимо оценивать их адекватность количественно. В презентации ниже привеен обзор самых основных подходов к этим двум задачам с использованием MATLAB или GNU Octave (в данном случае до запуска кода нужно подключить статистический пакет: pkg load statistics).



Задание: опираясь на приведенную методику, для выбранной батареи провести обработку исходных данных и аппроксимируеющих их моделей (линейных и нелинейных, сравнить полученные аппроксимации по обсужденным в презентации критериям). 

пятница, 28 ноября 2025 г.

Оцифровка графических данных и их обработка

 В опубликованных научных работах данные зачастую представлены в виде графиков, а не таблиц с числами. Но для верификации численных моделей возникает необходимость сравнить расчеты с экпериментом, базируясь на этих данных. Поэтому их надо оцифровывать. Удобным и эффективным средством для этого является онлайн-программа WebPlotDigitizer. Ниже представлена презентация, пошагово объясняющая принципы работы с ней.



Задание: построить кривую разрядки на основе обработанных данных для выбранной батареи, сохранить ее на диск в виде графического файла, после чего оцифровать при помощи WebPlotDigitizer, построить оцифрованные данные и разницу между ними и исходными. 

вторник, 25 ноября 2025 г.

Объявление

 В пятницы 28.11.2025 и 05.12.2025 пар в очном формате не будет. Поясняющие презентации и задания для выполнения дна их основе будут размещены здесь на сайте перед временем начала занятий. Выполненные занания принимаются по электронной почте.

пятница, 14 ноября 2025 г.

Нелинейная регрессия: продолжение

 В предыдущих материалах зазобран пример пример нелинейной регрессии функцией одного типа. В презентации вводного занятия приевдены еще несколько вариантов, которые следует применить по аналогии. 

Внимнию персонажей, полагающих, что они все изучают самостоятлеьно, а не на парах: на следующей паре (21 ноября) таковым будет выдана контрольная работа по характеристикам изученных Li-ion батарей, выяаленных по данным тестовых измерений и их обработки.

пятница, 7 ноября 2025 г.

Нелинейная регрессия

 Помимо моделей, образованных линейной комбинацией функций, рассмотренных ранее, кривые зарядки-разрядки могут аппроксимироваться также более сложными выражениями, которые приближают экспериментальные данные в смысле метода наименьших квадратов. Одна из функций, реализующих такой подход - lsqcurvefit. Рассмотрим ее применение на примере двойной экспоенциальной модели (double exponential fit) - первой из перечня в статье.